На рисунке AB=BC=CA и угол ABM = углу CBM, KM — биссектриса треугольника BMA. Найдите угол BKM
На рисунке AB=BC=CA и угол ABM = углу CBM, KM — биссектриса треугольника BMA. Найдите угол BKM
в подобных треугольниках ABC и KMN равны углы B и M ,C и N ,AC=3 см ,KN=6 см,MN =4 см,угол A=30 градусов .Найдите:BC,угол K, отношение площадей треугольника ABC и KMN ,отношение в котором биссектриса угла C делит сторону AB
Задача по в подобных треугольниках ABC и KMN равны углы B и M ,C и N ,AC=3 см ,KN=6 см,MN =4 см,угол A=30 градусов .Найдите:BC,угол K, отношение площадей треугольника ABC и KMN ,отношение в котором биссектриса угла C делит сторону AB для школьников 5 - 9 класс? Узнайте решение и получите советы по предмету Геометрия. Прочитайте множественные ответы, чтобы разобраться в теме. Ответы уже доступны. Если у вас есть трудности, не стесняйтесь попросить помощи у экспертов. А также вы можете стать экспертом и помогать другим ученикам!
В подобных треугольниках ABC и KMN равны углы В и М, С и N,
АС = 3 см,
KN = 6 см,
MN = 4 см,
∠А = 30°
————————
Найти:
а) ВС,
б) S (АВС) / S (KMN)
в) AD / BD
a) ВС / MN = AC / KN
ВС = AC * MN / KN = 3 * 4 / 6 = 2 см
Т. к. треугольники подобны, то соответственные углы равны, поэтому — ∠K = ∠А = 30°
в) Т. к. линейные размеры треугольника KMN в два раза больше треугольника АВС,
то отношение площади тр-ка KMN к площади тр-ка АВС = 4, или: S (АВС) / S (KMN) = 1 / 4
(отношение площадей фигур равно квадрату отношений их сторон) .
в) Пусть биссектриса угла С делит сторону АВ в точке D.
Тогда биссектриса угла делит противоположную сторону треугольника в отношении соседних сторон, т. е:
AD / BD = АС / ВС = 3 /2