Блог для маленьких школьников и их родителей
ШколаЛа

Подайте число 12 у вигляді суми дво невід’ємних доданків, так щоб сума їхніх квадратів була НАЙМЕНШОЮ.

Автор:
Предмет: Алгебра
Уровень: 10 - 11 класс

Подайте число 12 у вигляді суми дво невід’ємних доданків, так щоб сума їхніх квадратів була НАЙМЕНШОЮ.

Ответов к вопросу: 1
  • lizkaagw
    22.11.2024 | 11:18

    Згідно з теоремою Лежандра-Жакобі, кожне натуральне число можна представити у вигляді суми трьох квадратів не меншим, ніж дві з яких можуть бути нульові.

    Таким чином, число 12 можна представити у вигляді суми квадратів трьох цілих чисел таким чином:

    12 = 2^2 + 2^2 + 2^2

    Але, згідно з умовою задачі, ми шукаємо суму двох доданків, тому можемо проігнорувати третій доданок. Отже, ми можемо подати число 12 у вигляді суми двох доданків 2^2 та 2^2, тобто:

    12 = 2^2 + 2^2

    Сума їхніх квадратів дорівнює 2^2 + 2^2 = 8, що є найменшою можливою сумою квадратів для цього числа. Таким чином, ми досягли мінімуму, який могли досягти.

Ответить на вопрос:
:p :-p 8) 8-) :lol: =( :( :-( :8 ;) ;-) :(( :o:
Нажимая на кнопку я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.