В правильной четырехугольной призме ABCDA1B1C1D1 точка К — середина ребра СС1, AB равно 2 см, АA1 равно…
В правильной четырехугольной призме ABCDA1B1C1D1 точка К — середина ребра СС1, AB равно 2 см, АA1 равно 4 см. Найдите периметр сечения призмы плоскостью проходящей через точки K и B1 и параллельной прямой A1C1.
Ответ:
Для розв’язання цієї задачі можна скористатися властивостями геометричних фігур.
1.Обчислимо висоту призми. Вона дорівнює відстані від вершини A до площини DA1C1. Знайдемо висоту за допомогою трикутника ADC1, в якому висота, що проходить через вершину A, розділить бічне ребро DC1 у співвідношенні 1:3 (за теоремою про подібні трикутники).
2.Знаючи висоту призми, можна знайти висоту трикутника DAM, де М — середина ребра DD1, а A та M — вершина та середина відповідно.
3.Таким чином, знайдемо висоту трикутника DAM та отримаємо відстань від точки М до площини DA1C1.
Отримані значення допоможуть знайти відстань від точки М до площини DA1C1.