Моторний човен проплив 24 км за течією річки і повернувся назад, витративши на весь шлях 2 год 12 хв….
Моторний човен проплив 24 км за течією річки і повернувся назад, витративши на весь шлях 2 год 12 хв. Наступного дня цей човен проплив 10 км за течією річки, витративши 25 хв. Знайдіть власну швидкість човна (у км/год).
Відповідь:
Швидкість течії річки дорівнює 2 км/год.
Пояснення:
Позначимо як Х — швидкість течії річки, у такому випадку швидкість моторного човна за течією дорівнює ( 18 + Х ), а його швидкість проти течії дорівнює ( 18 — Х ). Час, який човен витратив на подолання відстані у 8 км за течією дорівнює 8 / ( 18 + Х ), а час на подолання такої ж відстані проти течії дорівнює 8 / ( 18 — Х ). Загальний час, витрачений на весь шлях 54 хв. дорівнює 54/60 = 9/10 години. Отримаємо рівняння:
8 / ( 18 + Х ) + 8 / ( 18 — Х ) = 9/10
1 / ( 18 + Х ) + 1 / ( 18 — Х ) = 9/80
( 18 — Х + 18 + Х ) / ( ( 18 + Х ) × ( 18 — Х ) ) = 9/80
36 / ( 324 — Х^2 ) = 9/80
36 × 80/9 = 324 — Х^2
Х^2 + 320 — 324 = 0
Х^2 — 4 = 0
D = 0^2 — 4 × 1 × ( -4 ) = 16
X1 = ( -0 + sqrt ( 16 ) / 2 = 2
X2 = ( -0 — sqrt ( 16 ) / 2 = -2
Другий варіант відкидаємо, так як, швидкість течії річки не може бути негативною величиною.
Швидкість течії річки дорівнює 2 км/год.