Найти частное решение дифференциального уравнения удовлетворяющее начальным условиям.
Найти частное решение дифференциального уравнения удовлетворяющее начальным условиям.
Ищете решение задачи по Найти частное решение дифференциального уравнения? Узнайте, как решить задачу для школьников 10 - 11 класс, и читайте обсуждения на тему Математика. Ответы уже доступны. Задавайте свои вопросы и становитесь частью нашего сообщества экспертов!
4.9.
Перед нами линейное неоднородное уравнение первого порядка.
То, что уравнение неоднородное, проверяется очень просто. Надо вместо х поставить , а вместо у поставить , саму производную не трогаем, где некий параметр. Если его удастся сократить, то уравнение однородное.
Сократить мешает единица. Значит, уравнение неоднородное. Перепишем его в таком виде, разделив обе части на х²:
Самое, что ни есть, линейное неоднородное уравнение первого порядка. Такое уравнение можно решить одной заменой:
, где u и v — некоторые неизвестные функции от икса.
По правилу дифференцирования сложных функций:
Подставляем в исходное уравнение:
Составляем систему. То, что в скобках приравниваем нулю, оставшийся член приравниваем правой части:
Решаем по порядку. Из первого уравнения находим v.
Полученное v подставляем во второе уравнение.
Обе неизвестные функции u и v нашли, записываем решение:
Находим частное решение при y(1) = 0
И последнее, записываем ответ: