Автор: irabryuhanova09
Предмет: Геометрия
Уровень: 5 - 9 класс
На рисунку кут ACB=90°, кут BAK=90°, кут CAB=60°. Знайдіть кут AKB, якщо AC=8 см, BK=32 см. Допоможіть будьласка, відповідь повинна бути розгорнута, з розв’язанням
Автор: kazumovmedzid024
Предмет: Геометрия
Уровень: 5 - 9 класс
На рисунка AB параллельна CD а) Докажите, что AO*OD=BO*OC б)Найдите AB, если BD=24, BO=9, CD=25 см.
ДАЮ 84 БАЛЛА!
Автор: nursultantursunaliev
Предмет: Геометрия
Уровень: 5 - 9 класс
На рисунку зображено трикутники abc і kmp такі, що кут А= куту К, кут С = куту P, AB=1/3 KM. Яка довжина сторони KP, якщо AC=12 см
а)72 см
б)36 см
в)18 см
г)8 см
пж срочно! даю 40 балов
Автор: n0641751
Предмет: Геометрия
Уровень: 5 - 9 класс
1) AM=6см, MB=4см, AK=4см, AC=12см (рис. 146). Найдите площадь четырехугольника MBCK, если площадь треугольника AMK равна 16см^2
2) Площадь параллелограмма ABCD равна Q. На прямой BC взята точка M. Найдите площадь треугольника AMD
Решите, пожалуйста, способами 8 класса
ДАЮ 30 БАЛЛОВ
Автор: maks12451542
Предмет: Геометрия
Уровень: 5 - 9 класс
На рисунке AB=AC и
∠
BAD=
∠
CAD.
AC=4,7 см, DC=3,4 см, AD=5,3 см
На сколько сантиметров сторона AD больше чем AB,
Автор: irina180161
Предмет: Геометрия
Уровень: студенческий
3. По условию и рисунку, реши задачу.
а
В
B
Дано: alblc,
AC — 5 Найдите: Ast
СВ 3
С.В.
Автор: andregom08088
Предмет: Геометрия
Уровень: студенческий
D6. Решите задачу векторным методом. Выполните рисунок.
Дан треугольник ABC. Известно, что AB = 6см, BC= 3√3см, Z ABC= 30º.
Найдите длину медианы ВM.
Автор: nikita27332
Предмет: Геометрия
Уровень: 5 - 9 класс
В треугольнике ABC точка K делит сторону AC в отношении CK:KA=1:3,а точка M сторону BC в отношении CM:MB=2:5.Точка D является точкой пересечения отрезков AM и BK.Найдите длину отрезка AD,если DM=10 см.
Автор: kirilhomenko33333
Предмет: Геометрия
Уровень: 5 - 9 класс
Если AC= 11 дм, BD= 12 дм, AD= 16 дм, то BC=
Ответ:
АС = см
Объяснение:
Найди AC, если A, B принадлежит α, AK||BM, AK = 16 см, BM = 12 см, AB = 9 см, C = MK∩α.
Через две параллельные прямые можно провести плоскость, и притом только одну.Свойство параллельных прямых:
Если две прямые параллельны то при пересечении их с третьей (секущей) накрест лежащие углы равны.Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого. Основное свойство пропорции:
Произведение крайних членов пропорции равно произведению средних членов этой пропорции.РЕШЕНИЕМК пересекает α в точке С.
Параллельные АК и МВ лежат в одной плоскости, которая пересекает плоскость α по прямой АВ. Т.е. точки А, С, В лежат на одной прямой.
Рассмотрим ΔАСК и ΔВСМ.
У них:
∠АСK=∠ВСМ — как вертикальные∠АКС=∠ВМС — как накрест лежащие углы, образованные при пересечении параллельных прямых АК и ВМ секущей МК.Следовательно ΔАСК подобен ΔВСМ по двум углам (первый признак подобия)
Из подобия треугольников следует пропорциональность соответствующих сторон:
Пусть АС= х см, тогда ВС=АС-х= 9-х (см), тогда:
Воспользовавшись свойством пропорций, находим х:
12x=16(9-x)
28x=144
Таким образом АС = см
#SPJ1