Знайдіть сьомий член і суму 10-ти перших членів геометричної прогресії (bn), якщо b1=27, а знаменник q=⅓
Знайдіть сьомий член і суму 10-ти перших членів геометричної прогресії (bn), якщо b1=27, а знаменник…
Знайти суму членів геометричної прогресії (bn) із третього по восьмий включно, якщо b1=-16, q=0,5
Знайти суму членів геометричної прогресії (bn) із третього по восьмий включно, якщо b1=-16, q=0,5
Найдите шестой член геометрической прогрессии (bn), если b1 равно 0,81 и q равно q минус одна третяя.
Найдите шестой член геометрической прогрессии (bn), если b1 равно 0,81 и q равно q минус одна третяя.
Знайдіть суму пяти членів геометричної прогресії якщо b4=16,2 q=3
Знайдіть суму пяти членів геометричної прогресії якщо b4=16,2 q=3
Знайдіть три перших члени геометричної прогресії, якщо b1=4 q=-0.2 поможіть будь ласка
Знайдіть три перших члени геометричної прогресії, якщо b1=4 q=-0.2
поможіть будь ласка
СРОЧНО!знайти знаменник та суму перших п’яти членів геометричної прогресії (bn), якщо b1=1,5;b4=12
СРОЧНО!знайти знаменник та суму перших п’яти членів геометричної прогресії (bn), якщо b1=1,5;b4=12
Знайти суму чотирьох перших членів геометричної прогресії, якщо b1= -16, а q = 3/2.
Знайти суму чотирьох перших членів геометричної прогресії, якщо b1= -16, а q = 3/2.
Найдите пятый член геометрической прогрессии (bn) если b1=48 q=1/2
найдите пятый член геометрической прогрессии (bn) если b1=48 q=1/2
№1 Знайдемо суму перших восьми членів геометричної прогресії, якщо b1= 81, q = 2. №2 Знайдемо суму перших…
№1 Знайдемо суму перших восьми членів геометричної прогресії, якщо b1= 81, q = 2. №2 Знайдемо суму перших чотирьох членів геометричної ; прогресії 4; 42; 43;. No3 Знайдемо перший член геометричної прогресії, у якої q = 2, 56= 315
Знайдіть суму нескінченної геометричної прогресії, перший член якої дорівнює B1=2, а знаменник q=1/3
знайдіть суму нескінченної геометричної прогресії, перший член якої дорівнює B1=2, а знаменник q=1/3
Найдите седьмой член геометрической прогрессии b1=-125, q=⅕
найдите седьмой член геометрической прогрессии b1=-125, q=⅕
Пожалуйста решите. Прошу
Пожалуйста решите. Прошу
Найди, при каких значениях u имеет смысл выражение 1/√2u^2−12u+16. 1)u≥4 2)другой ответ 3)u<2 4)∅…
Найди, при каких значениях u имеет смысл выражение 1/√2u^2−12u+16.
1)u≥4
2)другой ответ
3)u<2
4)∅
5)2≤u≤4
6)2
7)u>4
8)u≤2,u≥4
9)u<2,u>4
ПОМОГИТЕ ПОЖАЙЛУСТА!
ПОМОГИТЕ ПОЖАЙЛУСТА!
Розкладіть на множники а-b+a²-b²
розкладіть на множники а-b+a²-b²
При скольких натуральных чисел х рашение имеет смысла? Пожалуйста срочно всё отдам!
При скольких натуральных чисел х рашение имеет смысла? Пожалуйста срочно всё отдам!
83 (1, и 2 пример). Помогите решить. Меня учили что целые числа с целыми, дробными с дробными. И там…
83 (1, и 2 пример). Помогите решить. Меня учили что целые числа с целыми, дробными с дробными. И там где дробные найти знаменатель. И домножить числитель. Сделайте также где целые числа. Также над скобками напишите действия. Напишите на что сокращаете и как сокращаете. И как правильную дробь в неправильную дробь перевести. Напишите тоже. И всё это на листочке. Напишите. Дам 60 баллов
Дана алгебраическая дробь y−7/y+16. 1) При каких значениях переменной значение дроби равно нулю? Если…
Дана алгебраическая дробь y−7/y+16.
1) При каких значениях переменной значение дроби равно нулю?
Если y
2) При каких значениях переменной дробь не определена?
Если
Пожалуйста ответьте быстрее, мне нужно срочно! Отдам все свои баллы))
Пожалуйста ответьте быстрее, мне нужно срочно! Отдам все свои баллы))
Π және 3,52 сандарын салыстыр.
π және 3,52 сандарын салыстыр.
Sqrt{46 — 6 sqrt{5} } times (1 + 3 sqrt{5} ) Можно, пожалуйста, все подробно 8 класс
[ sqrt{46 — 6 sqrt{5} } times (1 + 3 sqrt{5} )]
Можно, пожалуйста, все подробно
8 класс
Ответ:
Загальна формула для n-го члена геометричної прогресії: bn = b1 * q^(n-1), де b1 — перший член, q — знаменник.
Тому, щоб знайти сьомий член, ми застосуємо цю формулу:
b7 = b1 * q^(7-1) = 27 * (1/3)^6 = 0.15187
Отже, сьомий член геометричної прогресії (bn) дорівнює 0.15187.
Також, щоб знайти суму перших 10 членів геометричної прогресії, ми можемо скористатися формулою:
S10 = b1 * ((q^10)-1)/(q-1)
Підставляємо в формулу відповідні значення:
S10 = 27 * ((1/3)^10-1)/(1/3-1) = 40.5
Отже, сума перших 10 членів геометричної прогресії дорівнює 40.5.