Помогите 8sin x-15 cos x =17
Помогите
8sin x-15 cos x =17
РЕШИТЕ УРАВНЕНИЕ
8COSX + 15SINX=17
Ответы на задачу по РЕШИТЕ УРАВНЕНИЕ 8COSX + 15SINX=17 для школьников 10 - 11 класс. Узнайте решение и читайте обсуждения по предмету Алгебра. Ответы на этот вопрос уже добавлены. Наш сайт предлагает вам возможность стать экспертом и помогать другим.
Это решается через половинные аргументы. Пусть x = 2t
8cos 2t + 15sin 2t = 17
8cos^2 t — 8sin^2 t + 30sin t*cos t = 17sin^2 t + 17cos^2 t
Переносим все направо
0 = 25sin^2 t — 30sin t*cos t + 9cos^2 t
Делим все на cos^2 t
25tg^2 t — 30tg t + 9 = 0
Получили квадратное уравнение относительно tg t.
(5tg t — 3)^2 = 0
К тому же получился точный квадрат.
5tg t — 3 = 0
tg t = tg (x/2) = 3/5
x = 2arctg(3/5) + pi*n
разделим обе части на 17
(8/17)cosx + (15/17)sinx = 1
т.к (8/17)²+(15/17)²=
=(8²+15²)/17²=
=(64+225)/289=1
то sin y=15/17, cos y=8/17
y=(-1)ⁿarcsin(15/17)+πk, n,k€Z
cosycosx+sinysinx=1
sin (y+x)=1
Откуда
y+x=½π+πk, k€Z
или
x= ½π-у+πk, k€Z
x=½π-(-1)ⁿ arcsin(15/17)+ πk, k,n€Z