В треугольнике ABC уголB= 66 градусов, AK=AD, CD=CT найти х
в треугольнике ABC уголB= 66 градусов, AK=AD, CD=CT найти х
В трапеции ABCD (AD∥BC) ∠ABC=96∘ и ∠ADC=48∘ На луче BA за точкой A отметили точку K такую, что AK=BC . Найдите угол DKC, если известно, что ∠BKC=24∘.
Не можете решить задачу по В трапеции ABCD (AD∥BC) ∠ABC=96∘ и ∠ADC=48∘ На луче BA за точкой A отметили точку K такую, что AK=BC . Найдите угол DKC, если известно, что ∠BKC=24∘.? На странице есть несколько вариантов решения задачи для школьников 5 - 9 класс. Ответы уже доступны. Задавайте вопросы, получайте помощь и становитесь экспертом, помогая другим ученикам разобраться в сложных темах.
Ответ:
∠DKC = 36°.
Объяснение:
Вот один из вариантов решения:
∠KAD = ∠ABC = 96° как соответственные углы при параллельных AD и ВС и секущей КВ. ∠BAD = 180° — 96° = 74° , ∠BCD = 180° — 48° = 132° (так как углы, прилежащие к боковым сторонам трапеции, в сумме равны 180°).
В треугольнике КВС ∠ВСК = 180° — 96° — 24° = 60° (по сумме внутренних углов треугольника).
Проведем прямую СL, параллельную ВК. АВСL — параллелограмм.
∠BCL = ∠BAL = 74° (противоположные углы параллелограмма). =>
∠LСD = ∠BCD — ∠BCL = 132° — 74° = 48°. =>
Треугольник СLD равнобедренный. => DL = CL = AB.
Тогда AD = AL + LD = AK + AB.
Но и КВ = АК +AВ. => AD = KB. =>
Треугольники КВС и DAK равны по двум сторонам и углу между ними (AD =KB, BC = АК, ∠KAD = ∠KBC).
В равных треугольниках соответствующие углы равны => ∠AKD = ∠BCK = 60°.
Тогда ∠DKC = ∠AKD — ∠AKC = 60° — 24° = 36°.