ПРОШУ ПОМОГИТЕ! ЭТО НЕ СИЛЬНО СЛОЖНО !
1. Из точки А к плоскости a проведения наклонную АВ и перпендикуляр АО. Найдите АВ, если ПО = 6 см, а АО = 8 см.
А) 9 см
Б) 8 см
В) 6 см
Г) 10 см
2. Какое из утверждений является правильным?
А) С точки на плоскость опущен перпендикуляр и наклонная. Перпендикуляр может быть больше за уклон.
Б) С одной точки можно провести только одну наклонную плоскости.
В) Две прямые, перпендикулярные к одной плоскости, является перпендикулярными между собой.
Г) Если наклонные проведены из одной точки, то большей наклонной соответствует большая проекция.
3. Наклонная, проведенная к плоскости, равно 6 см. Найдите проекцию этой наклонной на плоскость, если наклонная образует с плоскостью проекции угол 60 градусов.
А) 12 см
Б) 2√3 см
В) 3√3 см
Г) 3 см
4. В треугольнике АВС даны АС = 6 см, ВС = 8 см, ∠С = 9 градусов, СМ — медиана. Через вершину С проведена прямая СD, перпендикулярную к плоскости треугольника АВС, причем СD = 12 см. Найти DM.
А) 7 см
Б) 13 см
В) 10 см
Г) 6 см
5. Из центра O квадрата ABCD проведены перпендикуляр SO. Найдите ∠SCO, если AO = SO = 7 см.
А) 90 °
Б) 30 °
В) 60 °
Г) 45 °
6. На рисунке зображен куб ABCDA1B1C1D1, точка O — центр грани ABCD. Добавить прямую, перпендикулярной прямой OB1.
А) ВВ1
Б) AC
В) BD
Г) DD1
7. Ребро куба ABCDA1B1C1D1 равно 2. Найдите расстояние от точки O до вершин треугольника ABC, если точка O — центр грани A1B1C1D1. Ответ округлить до десятых.
8.Точка A и B лежат в двух перпендикулярных плоскостях α и β соответственно. Из точек A и B проведены перпендикуляры AA1 и BB1 к линии пересечения плоскостей. Найдите углы ∠B1 AB и ∠A1 BA, если AA1 = 2√3 см, BB1 = 2√6 см, A1 B = 6 см. В ответе укажите меньший из углов.
Ответ:
Объяснение:
Пусть точка D — это точка пересечения высоты AD, опущенной на гипотенузу BC, и плоскости α.
Так как треугольник ABC прямоугольный и равнобедренный, то угол BAC равен 45 градусов, а катет ВС равен a. Значит, гипотенуза BC равна a√2.
Также, угол между плоскостью α и плоскостью треугольника ABC равен 30 градусов, а значит угол между прямой AD и плоскостью α равен 60 градусов.
Тогда, в треугольнике ACD, мы можем использовать соотношение между сторонами и углами для нахождения расстояния h от точки A до плоскости α:
tg 60° = h / CD
h = CD * √3
Заметим также, что треугольник ACD подобен треугольнику ABC (по двум углам), а значит, соотношение между сторонами в этих треугольниках одинаково:
AD / AC = CD / BC
AD / (a√2) = CD / a
CD = AD / (√2)
Теперь мы можем выразить h через AD:
h = CD * √3 = (AD / (√2)) * √3 = AD * (√3 / 2)
Из этого выражения мы можем выразить AD:
AD = h * (2 / √3) = h * (2√3 / 3)
Осталось найти расстояние h. Для этого мы можем использовать формулу для расстояния от точки до плоскости:
h = |Ax + By + Cz + D| / √(A² + B² + C²)
где (x, y, z) — координаты точки D, A, B, C — коэффициенты уравнения плоскости α.
Так как плоскость α проходит через точку C и образует угол 30 градусов с плоскостью треугольника ABC, то она проходит через точки (a, 0, 0) и (a/2, a/2, 0). Используя эти две точки, мы можем записать уравнение плоскости α в виде:
x — y/√3 = 0
Тогда, коэффициенты A, B, C и D равны:
A = 1, B = -1/√3, C = 0, D = 0
Подставляя эти значения в формулу для h, получим:
h = |a/√3| / √(1 + 1/3) = h+/ a / √(1 + 1/3) = h / a / √4= h