У рівнобічній трапеції основы дорівнюють 4см і 20 см, бічна сторона 10 см. Знайдіть площу трапеції
У рівнобічній трапеції основы дорівнюють 4см і 20 см, бічна сторона 10 см. Знайдіть площу трапеції
Бічна сторона півнобедреної трапеції = 4 см і утворює з більшою основою кут 30 градусів . Знайти периметр трапеції якщо менша основа = 7 см
Ответы на задачу по Бічна сторона півнобедреної трапеції = 4 см і утворює з більшою основою кут 30 градусів . Знайти периметр трапеції якщо менша основа = 7 см для школьников 5 - 9 класс. Прочитайте множественные решения и обсудите подходы с участниками. Ответы на этот вопрос уже есть. На нашем сайте вы можете задать свой вопрос и стать частью сообщества экспертов, помогая другим.
Ответ:
AB = 4 см — бічна сторона
DC = 7 см — менша основа
∠A = 30° — кут між AB та BC
Оскільки ∠A = 30°, ми можемо знайти довжину BC за допомогою трикутника ABC:
sin(∠A) = BC / AB
sin(30°) = BC / 4
BC = 4 * sin(30°) = 2 см
Тепер можемо знайти довжину більшої основи AD за допомогою теореми Піфагора в прямокутному трикутнику ABD:
BD^2 = AB^2 — AD^2
AD^2 = AB^2 — BD^2
AD^2 = 4^2 — (7/2)^2
AD^2 = 16 — 24.5
AD = √8.5 см
Отже, периметр трапеції P = AB + BC + CD + DA = 4 + 2 + 7 + √8.5 ≈ 16.46 см. Відповідь: 16.46 см.