Даны две уравнении медиан треугольника x+y-5=0 и 2x-y-11=0 и уравнение одной из его сторон х-2у+7=0….
Даны две уравнении медиан треугольника x+y-5=0 и 2x-y-11=0 и уравнение одной из его сторон х-2у+7=0. Найдите координаты его вершин и остальные стороны его сторон
Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.
Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.
BN⊥AC ⇒ направляющий вектор для АС равен нормальному вектору для BN: .
Точка А(5,-3)∈АС и уравнение АС имеет вид:
CM⊥AB ⇒ направляющий вектор для АВ равен нормальному вектору для CМ: .
Точка А(5,-3)∈АВ и уравнение АВ имеет вид:
Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .